lunes, 9 de julio de 2012

4.7 Calcuo de Integrales Expresadas como Serie de Taylor

Cálculo de integrales expresadas como serie de Taylor


En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:
sin(x) y aproximaciones de Taylor centradas en 0, con polinomios de grado 1,3, 5, 7, 9, 11 y 13.
La función exponencial (en azul), y la suma de los primeros n+1 términos de su serie de Taylor en torno a cero (en rojo).
 f(x) = \sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}



Aquí, n! es el factorial de n y f (n)(a) indica la n-ésima derivada de f en el punto a.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.
Si a = 0, a la serie se le llama serie de Maclaurin.
Esta representación tiene tres ventajas importantes:
  • La derivación e integración de una de estas series se puede realizar término a término, que resultan operaciones triviales.
  • Se puede utilizar para calcular valores aproximados de la función.
  • Es posible demostrar que, si es viable la transformación de una función a una serie de Taylor, es la óptima aproximación posible.
Algunas funciones no se pueden escribir como serie de Taylor porque tienen alguna singularidad. En estos casos normalmente se puede conseguir un desarrollo en serie utilizando potencias negativas de x (véase Serie de Laurent. Por ejemplo f(x) = exp(−1/x²) se puede desarrollar como serie de Laurent.

4.6 Representaciòn de funciones mediante las serie de taylor

Sea f(x) una función definida en un intervalo que contiene al punto a, con derivada de todos los órdenes.

El polinomio de primer grado p1(x) = f(a) + f ' (a) (x-a) tiene el mismo valor que f(x) en el punto x=a y también, como se comprueba fácilmente, la misma derivada que f(x) en este punto. Su gráfica es una recta tangente a la gráfica de f(x) en el punto a.
Es posible elegir un polinomio de segundo grado, p2(x) = f(a) + f ' (a) (x-a) + ½ f ' ' (a) (x-a)2, tal que en el punto x=a tenga el mismo valor que f(x) y valores también iguales para su primera y segunda derivadas. Su gráfica en el punto a se acercará a la de f(x) más que la anterior. Es natural esperar que si construimos un polinomio que en x=a tenga las mismas n primeras derivadas que f(x) en el mismo punto, este polinomio se aproximará más a f(x) en los puntos x próximos a a. Así obtenemos la siguiente igualdad aproximada, que es la fórmula de Taylor:

f(x) ≈ f(a) + f '(a) (x-a) + (1/2!) f ' '(a) (x-a)2 + ...... + (1/n!) f (n)(a) (x-a) n

El segundo miembro de esta fórmula es un polinomio de grado n en (x-a). Para cada valor de x puede calcularse el valor de este polinomio si se conocen los valores de f(a) y de sus n primeras derivadas.

Para funciones que tienen derivada (n+1)-ésima, el segundo miembro de esta fórmula, como se demuestra fácilmente, difiere del primero en una pequeña cantidad que tiende a cero más rápidamente que (x-a)n. Además, es el único polinomio de grado n que difiere de f(x), para x próximo a a, en un valor que tiende a cero (cuando x tiende a a) más rápidamente que (x-a)n.
Si f(x) es un polinomio algebraico de grado n, entonces la igualdad aproximada anterior es una verdadera igualdad.

Para que sea exacta la igualdad aproximada anterior, debemos añadir al segundo miembro un término más, llamado resto:

f(x) = f(a)+f '(a)(x-a)+(1/2!) f ' '(a)(x-a)2+ ...... +(1/n!) f (n)(a)(x-a)n+(1/(n+1)!) f (n+1)(c)(x-a)n+1

El resto tiene la peculiaridad de que la derivada que en él aparece debe calcularse en cada caso, no en el punto a, sino en un punto c convenientemente elegido, desconocido, pero interior al intervalo de extremos a y x.
La demostración de la igualdad anterior es bastante engorrosa, aunque sencilla en esencia.

Las leyes naturales pueden expresarse, por regla general, con buena aproximación por funciones derivables un número arbitrario de veces, y por ello pueden ser aproximadas por polinomios cuyo grado viene determinado por la precisión deseada.

La fórmula de Taylor, que abre el camino para la mayoría de los cálculos en el análisis aplicado, es muy importante desde el punto de vista práctico.

La idea de aproximar una función mediante polinomios o de representarla como suma de un número finito de funciones más sencillas alcanzó un gran desarrollo en el análisis, donde constituye ahora una rama independiente: la teoría de la aproximación de funciones.



En el enlace siguiente de Fuente se encuentran ejemplos realizados para comprender mejor la aproximacion en Series de Taylor.

4.5 Serie de Taylor

Calculo de Integrales de funciones expresadas como Serie de Taylor





DESARROLLO EN SERIE DE TAYLOR


La función p(x)=a0+a1x+a2x2+..........+anxn, en la que los coeficientes ak son constantes, se llama polinomio de grado n. En particular y=ax+b es un polinomio de primer grado e y=ax2+bx+c es un polinomio de segundo grado. Los polinomios pueden considerarse las funciones más sencillas de todas. Para calcular su valor para una x dada, necesitamos emplear únicamente las operaciones de adición, sustracción y multiplicación; ni siquiera la división es necesaria. Los polinomios son funciones continuas para todo x y tienen derivadas de cualquier orden. Además la derivada de un polinomio es también un polinomio de grado inferior en una unidad, y las derivadas de orden n+1 y superiores de un polinomio de grado n son nulas.
Si a los polinomios añadimos las funciones de la forma y=p(x)/q(x) (cociente de polinomios, para cuyo cálculo necesitamos también de la división), las funciones raíz cuadrada de x y raíz cúbica de x, y finalmente, las combinaciones aritméticas de los tipos anteriores, obtenemos esencialmente las funciones cuyos valores pueden calcularse por métodos aprendidos en el bachillerato.
A este nivel se tienen nociones de algunas otras funciones tales como log(x), sen(x), ex, ..., pero, aunque se estudian sus propiedades más importantes, no se da una respuesta a las preguntas: ¿Cómo calcularlas? ¿Qué clase de operaciones, por ejemplo, es necesario realizar sobre la x para obtener log(x) o sen(x)?. La respuesta a estas preguntas la proporcionan los métodos desarrollados por el análisis matemático.


4.4 RADIO DE CONVERGENCIA


En matemáticas según el teorema de Cauchy-Hadamard el radio de convergencia de una serie de la forma \sum_{n=0}^\infty a_n(x-x_0)^n, con a_n,x,x_0\in\mathbb{R}, viene dado por la expresión:

R = \frac{1}{\lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |}

DEFINICION

Si nos limitamos al conjunto de los números reales una serie de la forma \sum_{n=0}^\infty a_n(x-x_0)^n, con a_n,x,x_0\in\mathbb{R}, recibe el nombre de serie de potencias centrada en x0. La serie converge absolutamente para un conjunto de valores de x que verifica que | xx0 | < r, donde r es un número real llamado radio de convergencia de la serie. Esta converge, pues, al menos, para los valores de x pertenecientes al intervalo (x0r, x0 + r), ya que la convergencia para los extremos de este ha de estudiarse aparte, por lo que el intervalo real de convergencia puede ser también semiabierto o cerrado. Si la serie converge solo para x0, r = 0. Si lo hace para cualquier valor de x, r = \infty \,\!



Ejemplos

Mostraremos el radio de convergencia de algunos desarrollos en series de potencias con sus respectivos radios de convergencia sin justificar porqué el radio de convergencia es el dado.

RADIO DE CONVERGENCIA FINITO


La función 1 / (1 − x) en su desarrollo con centro 0, o sea, en series de potencia xx0 = x − 0 = x, tiene el siguiente aspecto:

\frac{1}{1-x}=\sum_{n=0}^\infty x^n=1+x+x^2+x^3+....

(para el cálculo de la serie vea serie de Taylor). Su radio de convergencia es r = 1. Eso significa que para calcular si tomo cualquier valor cuya distancia al x0 = 0 es menor que r = 1, por ejemplo el x = 0.25, entonces al remplazarlo en la serie el resultado de calcular la serie será el mismo que remplazarlo en la función, de hecho

\sum_{n=0}^\infty 0.25^n=1+0.25+0.25^2+0.25^3+...=\frac{4}{3}.

(la cuenta se puede hacer por serie de potencia). Y por otro lado

\frac{1}{1-0.25}=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}.

Pero si tomamos un elemento fuera del radio de convergencia, por ejemplo el x = 2, los más probable es que al remplazarlo en la serie, ésta diverja (por eso el nombre de radio de convergencia). Efectivamente:

\sum_{n=0}^\infty 2^n=1+2+2^2+2^3+...=\infty.

DISTGANCIA DE SEGURIDAD


El cálculo del radio de convergencia no es simple. Veamos una función con dos desarrollos en serie con distintos centros y analicemos sus radios de convergencia. La misma función 1 / (1 − x) en su desarrollo con centro x0 = 3 tiene la forma:

\frac{1}{1-x}=-\frac{1}{2}+\frac{x-3}{4}-\frac{(x-3)^2}{8}+\frac{(x-3)^3}{16}-....

Pero en este caso su radio de convergencia es r = 2. Notemos que la función 1 / (1 − x) tiene una singularidad en el 1; y que en los dos caso anteriores el radio de convergencia coincide con la distancia del centro a la singularidad: | 0 − 1 | = 1 y | 3 − 1 | = 2. Esto será siempre verdadero para ésta función, pero, no puede generalizarse, como veremos en el siguiente ejemplo:



\frac{1}{1+x^2}=\frac{1}{2}-\frac{x-1}{2}+\frac{(x-1)^2}{4}-\frac{(x-1)^4}{8}+\frac{(x-1)^5}{8}-...



Como no hay singularidades reales podría suponerse que el radio es infinito, sin embargo su radio de convergencia es r=\sqrt{2}/2. Este radio parece caprichoso pero tiene que ver con el hecho de que pasando la función a dominio complejo, existe una singularidad en el denominador.La serie

RADIO DE CONVERGENCIA INFINITO


Por ejempo, la función ex puede desarrollarse en series de potencia de x − 0 = x, de hecho e^{x}=\sum_{n=0}^\infty x^n/n!=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+....

y esto vale para todo real x por eso el radio de convergencia será infinito

4.2.1 Series de Potencia

Serie de potencias

 

 Definición

Una serie de potencias alrededor de x=0 es una serie de la forma:
\sum_{n=0}^\infty a_n (x)^n
Una serie de potencias alrededor de x=c es una serie de la forma:
\sum_{n=0}^\infty a_n (x-c)^n
En el cual el centro es c, y los coeficientes a_n son los términos de una sucesion.

 Ejemplos
  • La serie geométrica \sum_{n=0}^\infty x^n es una serie de potencias absolutamente convergente si |x|<1 y divergente si |x|>1 ó |x|=1
  • La serie de potencias \sum_{n=1}^\infty (x/n)^n es absolutamente convergente para todo x \in \R
  • La serie de potencias \sum_{ n=3}^\infty (xn)^n solamente converge para x = 0

4.2 Serie Numerica y convergencia

4.1.2 Series Infinitas (Criterio de D' Lembert)(Criterio de Cauchy)



Criterio D' Lembert


El Criterio de d'Alembert se utiliza para determinar la convergencia o divergencia de una serie de términos positivos cualquiera.
Definiendo con n a la variable independiente de la sucesión, dicho criterio establece que si llamamos L al límite para n tendiendo a infinito de se obtiene un número L, con los siguientes

Si converge.
Si diverge.

Si L = 1, el criterio no decide y es necesario calcular el límite de otro modo.




El criterio de D'Alembert se utiliza para clasificar las series numéricas. Podemos enunciarlo de la siguiente manera:
Sea:


Tal que:
f(n) > 0 (o sea una sucesión de terminos positivos) y
f(n) tienda a cero cuando n tiende a infinito (condición necesaria de convergencia)
Se procede de la siguiente manera:


con n tendiendo a infinito.


Así obtenemos L y se clasifica de la siguiente manera:
L < 1 la serie converge
L > 1 la serie diverge
L = 1 el criterio no sirve hay que aplicar otro criterio.

Acontinuacion se muestra un breve Ejemplo:
















Criterio de Cauchy








Entonces, si:
L < 1, la serie es convergente.
L > 1 entonces la serie es divergente.
L=1, no podemos concluir nada a priori y tenemos que recurrir al criterio de Raabe,
o de comparación, para ver si podemos llegar

4.1.1 Series Finitas

Una diferencia finita es una expresión matemática de la forma f(x + b) − f(x +a). Si una diferencia finita se divide por b − a se obtiene una expresión similar al cociente diferencial, que difiere en que se emplean cantidades finitas en lugar de infinitesimales. La aproximación de las derivadas por diferencias finitas desempeña un papel central en los métodos de diferencias finitas del análisis numérico para la resolución deecuaciones diferenciales. La diferencia anterior puede considerarse un operador diferencial que hace corresponder la función f con Δf. El teorema de Taylor puede expresarse por la fórmula
 \Delta = hD + \frac12 h^2D^2 + \frac1{3!} h^3D^3 + \cdots = \mathrm{e}^{hD} - 1,
Donde D denota el operador derivada, que hace corresponder f\, con su derivada f\,', es decir,  D = u'\,, D^2 = u''\,, D^3 = u'''\,,...
Formalmente, invirtiendo la exponencial,
 hD = \log(1+\Delta) = \Delta - \frac12 \Delta^2 + \frac13 \Delta^3 + \cdots. \,
Esta fórmula sigue siendo válida en el sentido de que ambos operadores dan el mismo resultado cuando se aplican a un polinomio. Incluso para funciones analíticas, las series de la derecha no convergen con seguridad, sino que puede tratarse de una serie asintótica. Sin embargo, pueden emplearse para obtener aproximaciones más precisas de la derivada. Por ejemplo, Los dos primeros términos de la serie llevan a:
 f'(x) \approx \frac{\Delta[f](x) - \frac12 \Delta^2[f](x)}{h} = - \frac{f(x+2h)-4f(x+h)+3f(x)}{2h}.
El error de la aproximación es del orden de h2.
Las fórmulas análogas para los operadores posterior y central son
 hD = -\log(1-\Delta) \quad\mbox{y}\quad hD = \, \operatorname{arcsinh} \left( \Delta \right).

UNIDAD IV

Definición de serie


Las series son una parte esencial en el campo de las Matemáticas.
Aunque se define simplemente como la suma de términos finitos o infinitos, tiene una gran importancia.
Una serie finita termina finitamente, esto es, tiene definido tanto el primer como elúltimotérmino.
Por otro lado, una serie infinita continúa sin interrupción.
Por ejemplo: {1, 3, 6, 8} se puede considerar como una serie finita, mientras que una serie de la forma {2, 4, 6 8…} es un ejemplo de serie infinita.
En algunos casos, es beneficioso convertir un número o una función en forma de series infinitas lo cual a su vez puede ayudar en su cálculo.
Incluso puede lograr que el cálculo complejo sea más fácil.
Por ejemplo, para el cálculo exponencial, este puede ser convertido en la forma:
Esta técnica de expansión puede ser utilizada eficazmente con el fin de obtener los valores estimados de la función, de las integrales o para resolver ecuaciones diferenciales, algebraicas o integrales.
Cuando la serie infinita es reemplazada por la suma de los términos inicialesde la serie, un valor de error aproximado puede ser estimado, lo que a su vez, ayuda en la determinación de la razón de convergencia efectiva para la serie correspondiente.
Las series pueden ser convergentes o divergentes. Una serie convergente tiene las siguientes propiedades:
1) Si el término parcial de la sucesión de la serie converge, entonces se dice que toda la serie es convergente. Por otro lado, si el término parcial de lasucesión diverge, la serie también diverge.
2) En caso que el resto de alguna parte de la serie converja, entonces toda la serie converge y viceversa.
3) Si una serie de la forma converge, entonces la serie de la forma converge también.
4) Si la serie de la forma converge, entonces la serie de la forma converge.
5) La serie converge, sólo con la condición de que también converja.
6) Se dice que una serie de la forma es convergente si α> 1 y diverge en el caso inverso, es decir, cuando α<1.
Puede suceder el caso que la suma de las series sea desconocida.
En ese caso, la condición de Cauchy puede ser utilizada con el fin de encontrar la convergencia de la serie.
De acuerdo con la condición de Cauchy, existe un número n∊para cada ∊> 0, el cual satisface la condición , n>nε. Aquí p es un entero positivo.
Una serie que contiene los términos positivos tiene su importancia en la teoría de las series.
Una condición necesaria e importante para que estos tipos de seriessean convergentes es que la sucesión de la suma parcial debe ser limitada.
Por otro lado, si se cumple la condición , entonces la serie diverge.
Veamos un ejemplo del concepto de series convergentes y divergentes. Suponga que la forma de la seriees .
Con el fin de determinar si la serie dada converge o diverge, lo primero y más importante a determinar es si la suma parcial de la sucesión diverge o converge. La suma parcial de la sucesión parala serie correspondiente puede ser dada como . Se puede observar que el límite de los términos de la suma parcial es divergente al infinito .
Por lo tanto, se dice que toda la serie es divergente